RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia.

نویسندگان

  • Tao Zu
  • Yuanjing Liu
  • Monica Bañez-Coronel
  • Tammy Reid
  • Olga Pletnikova
  • Jada Lewis
  • Timothy M Miller
  • Matthew B Harms
  • Annet E Falchook
  • S H Subramony
  • Lyle W Ostrow
  • Jeffrey D Rothstein
  • Juan C Troncoso
  • Laura P W Ranum
چکیده

The finding that a GGGGCC (G4C2) hexanucleotide repeat expansion in the chromosome 9 ORF 72 (C9ORF72) gene is a common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) links ALS/FTD to a large group of unstable microsatellite diseases. Previously, we showed that microsatellite expansion mutations can be bidirectionally transcribed and that these mutations express unexpected proteins by a unique mechanism, repeat-associated non-ATG (RAN) translation. In this study, we show that C9ORF72 antisense transcripts are elevated in the brains of C9ORF72 expansion-positive [C9(+)] patients, and antisense GGCCCC (G2C4) repeat-expansion RNAs accumulate in nuclear foci in brain. Additionally, sense and antisense foci accumulate in blood and are potential biomarkers of the disease. Furthermore, we show that RAN translation occurs from both sense and antisense expansion transcripts, resulting in the expression of six RAN proteins (antisense: Pro-Arg, Pro-Ala, Gly-Pro; and sense: Gly-Ala, Gly-Arg, Gly-Pro). These proteins accumulate in cytoplasmic aggregates in affected brain regions, including the frontal and motor cortex, hippocampus, and spinal cord neurons, with some brain regions showing dramatic RAN protein accumulation and clustering. The finding that unique antisense G2C4 RNA foci and three unique antisense RAN proteins accumulate in patient tissues indicates that bidirectional transcription of expanded alleles is a fundamental pathologic feature of C9ORF72 ALS/FTD. Additionally, these findings suggest the need to test therapeutic strategies that target both sense and antisense RNAs and RAN proteins in C9ORF72 ALS/FTD, and to more broadly consider the role of antisense expression and RAN translation across microsatellite expansion diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C9orf72 BAC Mouse Model with Motor Deficits and Neurodegenerative Features of ALS/FTD

To define how the C9orf72 GGGGCC expansion mutation causes ALS/FTD and to facilitate therapy development, a mouse model that recapitulates the molecular and phenotypic features of the disease is urgently needed. Two groups recently reported BAC mouse models that produce RNA foci and RAN proteins but, surprisingly, do not develop the neurodegenerative or behavioral features of ALS/FTD. We now re...

متن کامل

C9orf72 BAC Transgenic Mice Display Typical Pathologic Features of ALS/FTD

Noncoding expansions of a hexanucleotide repeat (GGGGCC) in the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis and frontotemporal dementia. Here we report transgenic mice carrying a bacterial artificial chromosome (BAC) containing the full human C9orf72 gene with either a normal allele (15 repeats) or disease-associated expansion (∼100-1,000 repeats; C9-BACexp)...

متن کامل

RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention

A hexanucleotide GGGGCC repeat expansion in the noncoding region of the C9ORF72 gene is the most common genetic abnormality in familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The function of the C9ORF72 protein is unknown, as is the mechanism by which the repeat expansion could cause disease. Induced pluripotent stem cell (iPSC)-differentiated neuron...

متن کامل

Antibodies inhibit transmission and aggregation of C9orf72 poly‐GA dipeptide repeat proteins

Cell-to-cell transmission of protein aggregates is an emerging theme in neurodegenerative disease. Here, we analyze the dipeptide repeat (DPR) proteins that form neuronal inclusions in patients with hexanucleotide repeat expansion C9orf72, the most common known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Sense and antisense transcripts of the (G4C2...

متن کامل

RNA Misprocessing in C9orf72-Linked Neurodegeneration

A large GGGGCC hexanucleotide repeat expansion in the first intron or promoter region of the C9orf72 gene is the most common genetic cause of familial and sporadic Amyotrophic lateral sclerosis (ALS), a devastating degenerative disease of motor neurons, and of Frontotemporal Dementia (FTD), the second most common form of presenile dementia after Alzheimer's disease. C9orf72-associated ALS/FTD i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 51  شماره 

صفحات  -

تاریخ انتشار 2013